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O+HCI Cross Sections and Reaction Probabilities in DSMC!'

*Takashi Ozawa? 'L J. Wysong? and *D. A. Levin*

*Department of Aerospace Engineering
The Pennsylvania State University
University Park, PA 16802-1441
"Edwards Air Force Base, AFRL-PRSA
Edwards AFB, CA 93524

Abstract. A chemical reaction model, suitable for use in the Direct Simulation Monte Carlo (DSMC) method, is devel-
oped to simulate hypervelocity collisions of an important reaction in atmospheric-jet interactions - OCP)+HCI('Zt) —
OH(ID+CI(3P). The model utilizes the Quasi-Classical Trajectory (QCT) method with two potential energy surfaces (PES),
new benchmark triple A” and A’ surfaces'” and London-Eyring-Polanyi-Sato (LEPS) PES." The sensitivity of the flow to the
fidelity of the chemical model is investigated for the new QCT-derived model and the widely used Total Collision Energy
(TCE) model of Bird.”® The adequacy of the total collision cross section is also considered, and to obtain accurate collision
cross sections, the Dynamic Molecular Collision model of Tokumasu and Matsumoto!* is assumed and the collision cross
section is obtained by using the MD/QCT method with the aforementioned potential energy surfaces. The magnitude of the
inelastic cross section is small compared to the total cross section for both PESs. Therefore, MD/QCT VHS-equivalent colli-
sion cross sections are obtained and along with the MD/QCT reaction cross sections are utilized in the full DSMC calculation
of the flowfield. It is found that chemical reaction models do not affect the general flowfield, however, the OH production rate
is dependent on the chemical reaction model.

INTRODUCTION

The modeling of chemically reacting flows caused by the interaction of a Reaction Control Systems (RCS) jet
positioned on the side of a hypersonic rocket is a challenging problem. An interaction region between RCS jets and the
rarefied, high Mach number atmosphere is formed at high altitudes and the relative velocities of the freestream atomic
oxygen-plume chemical species are sufficiently high to produce chemical species that can radiate in various portions
of the optical spectrum.

In our earlier work,"”® a computational approach was established that ensured an accurate Direct Simulation Monte
Carlo (DSMC)" solution that captured the changing flow physics over the range of freestream conditions from altitudes
of 80-120 km and speeds of 3-8 km/s. Important features of the jet interaction are the hypervelocity chemical reactions
between the jet and atmospheric species that occur for reactant conditions very different from the conditions for which
the Arrhenius kinetic rates were obtained. Since HCI is present in high concentration in the propellant and chemically
reactive atomic oxygen is available in large percentage in the freestream, the accurate modeling of the O+HClI reaction
at hypervelocity conditions is crucial. In fact, at altitudes of 120 km and higher, O exchange with HCI was found
to contribute more than 70 % of the OH produced.” A detailed study of the DSMC flowfield calculation at 120 km
altitude for a freestream velocity of 5 km/s revealed an important problem for the reaction model of O+HCL."'

For hypervelocity collisions, the failure of the Total Collision Energy (TCE) chemistry model, widely used in
DSMC, to produce the OH formation by O+HCI may be due to multiple factors. As was shown in Refs. [5] and [6], the
translational perspective in the interaction region is much higher than 3,000 K, the maximum temperature for which
shock tube data exists. In addition, the case of the TCE model requires assumptions regarding pre-collisional energy
partitioning, that may be problematic for hypervelocity chemical reactions of this type. Since DSMC chemistry models
require the use of the reaction probability, difficulties encountered with the TCE reaction probabilities in earlier work"™
may also be due to the failure of the Variable Hard Sphere (VHS) model or its parameters, which are usually obtained
from low temperature flows. In our previous work,™ the Molecular Dynamics/Quasi-Classical Trajectory (MD/QCT)
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modeling of the reaction and total collision cross sections was presented. The Dynamic Molecular Collision (DMC)
model was used to calculate total collision cross sections, and the MD/QCT collision cross sections were compared
with those of the VHS model. The reaction probability for O+HClI — OH+Cl obtained by the Quasi-Classical
Trajectory (QCT) method with ab initio 3A” potential energy surface of Ramachandran and Peterson (RP)" was
compared with the TCE"™ reaction probability for an altitude of 120 km and a freestream velocity of 5 km/s. It was
found that both MD/QCT cross sections affected the product species, OH.

In this work, the MD/QCT method is further investigated with two PESs, new benchmark triple A” and A’ surfaces'
and LEPS potential of Persky ef al.” The sensitivity of the flow to the fidelity of the chemical reaction model is
investigated for the new QCT-derived model and the widely used TCE model.” Finally, we compare the changes
observed in the DSMC simulation for the different chemical reaction models for the O+HCI reaction at 120 km
altitude for a freestream velocity of 5 km/s.

MD/QCT MODELING

In our previous work, the VHS model with Bird values was used for the total collision cross section, o7. The VHS
cross section is defined by o) " = 1d? with® d = d,ef[2kTr/(11g?)” JT(2 — @)]'/%, where d is the diameter of a
molecule, i is the molecular reduced mass, g is the relative velocity, and  is the viscosity index (w = v —0.5, v is
the coefficient of viscosity). Reference [7] gives @ = 0.375, d,.y = 4.38 A, and 7.y = 273 K for the O+HCl reaction.
For implementation in DSMC, it is more consistent to obtain a transport-based collision cross section as the total
cross section and to convert the reaction cross section to a reaction probability, since the DSMC method already uses
the VHS model viscosity-based cross section as the basis for computing the number of collisions per cell per time-step
and as the basis for collision dynamics (hard-sphere isotropic scattering). In this spirit, Tokumasu and Matsumoto™
demonstrated the use of the DMC model in the calculation of accurate viscosity cross sections for a given potential
using a Monte Carlo integration method. While the integration over the impact parameter becomes infinite for the total
collision cross section, those for momentum and energy transfer cross sections are finite. Therefore, the viscosity cross
section was calculated first, and converted to the equivalent VHS collision cross section for each collision velocity.
To calculate the viscosity cross section, 6, by the Monte Carlo evaluation of an integral given by Ref. [9], relative
velocity, change of HCI internal energy before and after a collision, and deflection angle, ¥, are calculated from the
MD/QCT method.™ The MD viscosity cross section 6, yp converges when the maximum impact parameter is selected
so that the effect of potential is neglected. The equivalent VHS collision cross section is 67 = 7d”, and the diameter

. . . 6
for the total collision cross section can be obtained by d; = 4/ 2%ub

gt
NUMERICAL FLOW MODELING TECHNIQUE

We consider a generic RCS-vehicle geometry with freestream conditions at high altitudes, hypersonic flight for a
lateral side jet thrusting perpendicular to the rocket velocity vector into a near-vacuum environment (see Fig. 1). A
small rocket is modeled as a blunted cone cylinder and a thruster positioned on the cylinder right after the cone-
cylinder junction. The radius of the cylinder is 0.2 m, and the length from the head of the cone to the nozzle exit
is 2 m. In this work, the angle of attack is zero. The entire set of the chemical reactions between thruster side jet
and plume-atmospheric species includes reactions between oxygen and nitrogen species as well as ones that either
produce or consume OH (see Table 1). The freestream parameters at 120 km altitude are listed in Table 2. The species
mole fractions at the nozzle exit may be found in Ref. [5]. A starting surface was obtained from axisymmetric plume
core-flow DSMC simulations that were performed with nonuniform nozzle exit conditions.” The density isolines of
about 6 x 10%! molecules/m> were taken for the starting surface of a 60-Ibf (270-N) thruster. The starting surface is an
oval shape with approximate x and y dimensions of 0.3 and 0.5 m. The three-dimensional DSMC calculations were
implemented in the SMILE computational tool. The details of numerical parameters used in the calculations may be
found in Ref. [8].

RESULTS AND DISCUSSION

Although the DSMC method requires the probability of a reaction, instead of the rate constant, the latter quantity
provides a consistency check for the MD/QCT calculations presented in this work. Figure 2 presents the reaction
rate constant calculated using a parallel MD code between 1,000 K and 3,000 K. The QCT(RP) and QCT(LEPS) are
calculated in this work using the RP and LEPS surfaces, respectively. It is shown that the rate of Mahmud ez al"” used
in our previous DSMC calculations is higher than both the QCT rates and the Improved Canonical Variational Theory
(ICVT) rate constant of Xie ef al.""" While the QCT rates are slightly lower than the ICVT rate, the QCT rate constants
of RP and LEPS surfaces agreed well in this temperature range. The tunneling effect, not included in the MD/QCT
calculations, is more important for lower temperatures. For QCT(RP) calculations, because only the 3A” surface was
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used, the QCT(RP) calculations resulted in the lower reaction rate since the >A’ surface contribution increases at higher
temperatures.

Figure 3 shows a comparison of the distribution of the deflection angle ) for O+HCI collisions predicted by the
VHS, Variable Soft Sphere (VSS), Linear Deflection Function (LDF),"” and MD/QCT(RP) models. The MD/QCT
results were calculated at Ej,; = 2.0 x 107!° J and a relative velocity g of 5 km/s. For the VHS and VSS models,
the deflection functions are given by yyus = 2cos™'(b/d) and yyss = 2cos™" (b/d)"/® , respectively. The adjustable
parameter ¢ has a value between 1 and 2, and a value of 1.59" and a diameter, d, of 2.35 A were used. The LDF
model proposed by Dimpfl et al'” defines since the deflection angle as, x.pr(b) = 180(1 —b/drpF), where a value
of dipr = 2.63 A was chosen to match with the MD/QCT results. The LDF model shows better agreement with the
MD/QCT results than the VHS and VSS models. However, the discrepancy increases between the MD/QCT results
and all of the models for smaller deflection angles. Since it is difficult to define the cut-off deflection angle as may be
seen in the figure, the DMC method is seen to be the most accurate method of calculating the collision cross section.

The preferred VHS values for O+HCI collisions were investigated using the DMC method. In our earlier reported
results,”™® a viscosity index @ of 0.25 for O and @ of 0.5 for HCI were used.” " However, although the viscosity
index @ of HCl is 0.5 between 20 and 99 °C, for some gases, ® decreases as temperature increases.” Therefore,
the VHS total cross sections obtained from a Maxwell molecule may not be accurate for higher temperatures. The
parameters, @ and the reference diameter d,.y used in the previous DSMC calculations were mostly obtained from
viscosity data in the low temperature range." Figure 4 presents a comparison of the collision cross sections between
the MD/QCT (RP and LEPS) and VHS models for O+HCI collision at E;,; = 0.5 x 107!% and 2.0 x 10~!° J. Both
of the MD/QCT cross sections are greater than the VHS cross sections obtained from the data of Ref. [7] (Bird).
The MD/QCT cross sections of the RP surface are slightly smaller than those of the LEPS surface. Therefore, if the
MD/QCT VHS-equivalent collision cross sections are used, lower reaction probabilities are predicted than those that
would be obtained from the VHS cross sections using the data in Ref. [7] (Bird). Also, it was found that the MD/QCT
VHS-equivalent cross sections do not change significantly with changes of the HCl internal energy. Thus, the MD/QCT
cross sections could be fit to the simpler VHS model. The parameters that give a good fit of the MD/QCT cross sections
of both the RP and LEPS surfaces to the VHS form are listed in Table 3. It is found that o3/, (RP) and 7.}/, (LEPS)
are slightly different, but both results are significantly different from the values used in our previous work.

Figures 5 and 6 show comparisons of the reaction probabilities for O+HCl — OH+Cl between the two MD/QCT
results, P,yp(RP) and P, »p(LEPS), and the TCE model, P.7cg at 3 km and 5 km, respectively. For the MD/QCT
reaction probabilities, both reaction and collision cross sections were calculated. For the TCE model, the Xie’s rate
and VHS parameters of Bird were used. At 3 km/s, since the G¥ HS (RP) is greater than the o) /5(Bird), the TCE
model predicts reaction probabilities higher than P, ;p(RP). The P, up(LEPS) predicts higher probabilities if the HCI
internal energy is greater than 1.0 x 10™!% J. However, for internal energy lower than 1.0 x 10™!% J, P, ,;p(LEPS) is
dramatically lower than P, p(RP) and P.rcg. This is because the LEPS reaction cross sections are lower for low
internal energy than those of RP. The energy transfer from the translational to internal mode is predicted to be low for
the LEPS potential. Thus, if the HCl initial internal energy is very low, some OH products can have the internal energy
less than the zero point energy. These are unphysical, so they must be recalculated with a different impact parameter.
At 5 km/s, the difference between P, yp(RP) and P, rcg is decreased. Similarly, Py p(LEPS) is higher than the other
two models for the internal energy higher than about 1.7 x 10~!° J, and decreases rapidly as the HCI internal energy
decreases.

The DSMC calculations were implemented for the four O+HCI chemical reaction models at 120 km altitude for a
freestream velocity of 5 km/s. We designate the TCE model used with the previous rate constant"” as case (1); the
TCE model using the rate constant of Xie et al"" as case (2); the MD/QCT reaction probability based on RP as case
(3); and, the MD/QCT reaction probability based on LEPS as case (4). For the TCE models, the VHS total collision
cross section with Bird’s parameters was used. For cases (3) and (4), the MD/QCT reaction probability is the ratio of
the MD/QCT reaction cross section to the G¥ S of each potential (see Table 3), and the computed MD/QCT reaction
probabilities were tabulated and used in the 'DSMC simulations. The difference in collision cross sections changes
the number of collisions between O and HCI molecules which in turn, affects the OH production rate. The general
flowfield contours may be found in Ref. [8]. Note that the change of chemical reaction models does not affect the
overall flowfield. In addition, the change of the O+HCI collision cross section does not affect the overall flowfield
because collisions between O and HCI are not the main collision in the flowfield (O is 18 % of the freestream and HCI
is 14 % of the side jet).

Figure 7 shows the OH number density contours with a maximum OH number density of about 2 x 10'® m=3 with
the case (2) chemical reaction rate. Figures 8 and 9 present the OH number density distributions along the y = 8 m
line and the x = —1.5 m line, respectively, and a quantitative comparison between the four chemical reaction models
is shown. As expected, the TCE model (1) predicts higher OH production than the MD/QCT models. With the case (2)
reaction rate, the maximum OH number density is reduced by more than 50 % compared to the case (1) reaction. In
the shock region, the reaction probabilities changed dramatically between cases (1) and (2). For case (1), the reaction
rate results in TCE reaction probabilities greater than one (as found in our previous work) due to the high translational
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temperatures generated in the jet-atmosphere interaction. In contrast, with the rate of Xie et al, case (2), most of
the O+HCI collisions are predicted to have a TCE reaction probability smaller than 0.4. While the MD/QCT(RP)
probability, case (3), is slightly lower than for case (2), the MD/QCT(LEPS) probability, case (4), is much lower than
for cases (2) or (3). There are two factors that caused the change in OH production between cases (2) and (3). The first
factor is the larger O+HCI collision cross section obtained by the MD/QCT method that leads to more OH molecules
being produced. The second factor is the lower MD/QCT reaction probability of RP, however, the effect of the change
of collision cross sections was found to be smaller than the change of reaction probability. Thus, these two factors
result in a slightly lower OH number density compared to case (2). The lowest OH production for case (4) is due to
the lower reaction probability in low HCl internal energy range as is shown in Figs. 5 and 6. The reaction probabilities
with the MD/QCT, cases (3) and (4), is lower than the TCE models, and more than 80 % of the reaction had the
probability of lower than 0.1.

CONCLUSIONS

The DSMC method was applied to the calculation of chemically reacting flows of the interaction of a jet with a
transition-to-rarefied atmosphere. The MD/QCT calculations for two PESs were performed for the O+HCI reaction.
Both reaction and collision cross sections were obtained, and the sensitivity of the flow modeling to the fidelity of
chemical reaction models in DSMC was assessed. From the comparison between RP and LEPS potentials, it is found
that since energy transfer from translational to internal modes are low for the LEPS potential, and the LEPS reaction
probability is predicted to be low for low HCI internal energies, the OH production modeled with MD/QCT(LEPS)
was lower than the MD/QCT(RP) case. The LEPS potential, although much simpler and readily available than the
RP surfaces are, gives significantly different results when used in the DSMC simulation. The difference in the DSMC
results, in contract to the similarity in the rates (Fig. 2) is due to the high degree of nonequilibrium in the flow.

ACKNOWLEDGMENTS

The research performed at the Pennsylvania Sate University was supported by the Air Force Office of Scientific
Research Grant No. F49620-02-1-0104 administered by Dr. Mitat Birkan and the Missile Defense Agency MSTAR
program, contract No. HQ0006-05-C-0021. Special thanks is to Dr. Sergey Gimelshein for discussing the details of
the calculations.

REFERENCES

1. Ramachandran, B. and Peterson, K. A., “Potential Energy Surfaces for the 34> and 3A’ Electronic States of the O(3P) + HCl
System,” J. Chem. Phys., Vol. 119, No. 18, 2003, pp. 9590-9600.

2. Persky, A. and Broida, M., “Quasiclassical Trajectory Study of the Reaction O(*P)+HCl — OH+Cl. The Effect of Vibrational
Excitation, Rotational Excitation, and Isotopic Substitution on the Dynamics,” J. Chem. Phys., Vol. 81, No. 10, 1984,
pp. 4352-4362.

3. Bird, G. A, “Monte-Carlo Simulation in an Engineering Context,” Rarefied Gas Dynamics, edited by S. Fisher, Vol. 74,
AIAA, New York, 1981, pp. 239-255.

4. Tokumasu, T. and Matsumoto, Y., “Dynamic Molecular Collision (DMC) Model for Rarefied Gas Flow Simulations by the
DSMC Method,” Physics of Fluids, Vol. 11, No. 7, 1999, pp. 1907-1920.

5. Gimelshein, S. F,, Levin, D. A., and Alexeenko, A. A., “Modeling of the Chemically Reacting Flows from a Side Jet at High
Altitudes,” Journal of Spacecraft and Rockets, Vol. 41, No. 4, 2004, pp. 582-591.

6. Gimelshein, S. F., Alexeenko, A. A., and Levin, D. A., “Modeling of the Interaction of a Side Jet with a Rarefied Atmosphere,”
Journal of Spacecraft and Rockets, Vol. 39, No. 2, 2002, pp. 168-176.

7. Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, chap. 2, Clarendon, Oxford, England, U.K.,
1994.

8. Ozawa, T., Levin, D. A., and Wysong, L. J., “O+HCI Chemistry Models for Hypervelocity Collisions in DSMC,” AIAA paper
2006-1193, Jan. 2006, submitted to Physics of Fluids.

9. Lordi, J. A. and Mates, R. E., “Rotational Relaxation in Nonpolar Diatomic Gases,” Physics of Fluids, Vol. 13, No. 2, 1970,
pp. 291-308.

10. Mahmud, K., Kim, J.-S., and Fontijn, A., “A High-Temperature Photochemical Kinetics Study of the O+HCI Reaction from
350 to 1480 K.” J. Phys. Chem., Vol. 94, No. 7, 1990, pp. 2994-2998.

11. Xie, T., Bowman, J. M., Peterson, K. A., and Ramachandran, B., “Quantum Calculations of the Rate Constant for the
O(3P)+HC1 Reaction on New Ab Initio 3A” and 3A’ Surfaces,” J. Chem. Phys., Vol. 119, No. 18, 2003, pp. 9601-9608.

12. Dimpfl, W. L. and Bernstein, L. S., “Improvements in Modeling Radiant Emission from the Interaction Between Spacecraft
Emanations and the Residual Atmosphere in LEO,” Proceedings of the 2005 AMOS Technical Conference, Maui, Hawaii,
Sept. 2005.

13. Chapman, S. and Cowling, T. G., The Mathematical Theory of Non-Uniform Gases, Third Edition, chap. 12, Cambridge
University Press, New York, 1970.

926
Rarefied Gas Dynamics: 25-th International Symposium, edited by M.S.Ivanov and A.K.Rebrov. Novosibirsk 2007



plume flow
Z Y W0
free I
stream 2m
— e f‘< |
. A g 30- —5— MD(RP)
_ < 0.4 m g2 | — -A— - MD(LEPS)
- T o v % —-—-—-- VHS (Bird)
1.73m 2.7m a |
5 0P
e
S
. [}
FIGURE 1. Schematic of the flow. H
o
__g 10F
3 |
= -
1010 - :
F 0 1 1 1
r 4000 6000 8000
. O QCT (RP) Vv, mis
oS A QCT(LEPS)
107 N Xie, ICVT . .. .
» & ~ — _ — _ Mahmud FIGURE 4. Comparison of total collision cross sections be-
2 r tween MD/QCT (RP and LEPS) and VHS models for O+HCI
8 [ collision.
[<]
E 10"
= g
5 5
E o n 10°F
10—13 -
L £
RT3 NI ENANENINES EANIANE IINNATE ANETATA AT WA 8
10 0.4 06 07 1 é
1000/T, K" e
]
g
FIGURE 2. Reaction rate constant for O+HCl — OH+Cl as § -/ 5 3.0kmis(RP)
a function of temperature. The QCT(RP) and QCT(LEPS) are E - Jid -+ N
calculated in this work. -
"
10AI\\\\I\\\\I\\\\I\\\\I\\\\I
5E-20 1E-19 1.5E-19 2E-19 2.5E-19 3E-19
HCl internal energy, J
180 & . . ..
N FIGURE 5. Comparison of the reaction probability calculated
al = MD/QCT by using the reaction cross section divided by MD/QCT total col-
10 0 - oo 3;‘;@_1 59) lision cross section (or(MD)): Reaction probabilities as a func-
[ S \ LDF Model tion of the reactant internal energy at 3 km/s.
= 120
2 -
> |
c |
© L
§ or
-_a i 10°
2 r
a oof
[ Z
30| 5
i - 3
, ., £
ol ooy v 3 N 18 5
0 o2 08 1 12 14 5 ,
b/d & ,/ —8— 5.0 km/s (RP)
; — —A— — 5.0 km/s (LEPS)
; — 5.0 km/s (TCE, Xie)
FIGURE 3. Comparison of distributions of the deflection angle 10° &
x for O+HCI collisions predicted by the VHS, VSS, LDF models, L
and MD/QCT. The MD/QCT results were calculated at Ej;; = 5620 1E-19 HC:PE'-W |t ) 25619 3E19
. . internal energy,
2.0 x 10~1? J and a relative velocity of 5 km/s. i

FIGURE 6. Comparison of the reaction probability calculated
by using the reaction cross section divided by MD/QCT total col-
lision cross section (or(MD)): Reaction probabilities as a func-
tion of the reactant internal energy at 5 km/s.

927

Rarefied Gas Dynamics: 25-th International Symposium, edited by M.S.Ivanov and A.K.Rebrov. Novosibirsk 2007



TABLE 1. Freestream-plume species reactions for OH production

Reaction A, m3/s n E, x107197
H,0+N,—OH+H+N, 5.81x 10715 0.00 7.314
H,0+0,—0H+H+0, 1.13x 1077 -1.31 8.197
H,0+0—OH+H+O 1.13x 1077 -1.31 8.197
H,0+0—0H+OH 1.13x 10710 0.00 1.275
H+0,—OH+0 1.66 x 1010 0.00 1.061
O+H,—OH+H 3.12x 1071 0.00 0.952
OH+Cl—O+HCl 3.10x 10727 291 0.070
O+HCI—OH+Cl(Mahmud)'"  5.60x 10727  2.87 0.244
O+HCl—OH+CI(Xie)"! 1.70x 10722 1.485 0.408

TABLE 2. Freestream parameters

Parameter 120 km
Temperature, K 354
Number density, molec/m®  4.73 x 107
0O, mole fraction, % 9 e
N>, mole fraction, % 73 r L
O mole fraction, % 18 o F T D ErdaLErsy
R L
0% \\‘.\\_\
TABLE 3. VHS parameters for O+HCl }; Y
R
Method O dep A TepK s [ \\;_‘\\
Bird 0375 438 273 ) i
QCT(RP) 0390 39 1000 o kN
QCT(LEPS) 0.350 3.8 1000 BN R —
X, m

FIGURE 8. Comparison of OH number density (molecule/m?)
at y = 8 m for four chemical reaction models at 120 km altitude
for freestream velocity of 5 km/s.
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FIGURE 9. Comparison of OH number density (molecule/m>)
at x = —1.5 m for four chemical reaction models at 120 km
altitude for freestream velocity of 5 km/s.

FIGURE 7. OH number density (molecule/m?) contours with
the rate of Xie er al (TCE) at 120 km altitude for freestream
velocity of 5 km/s. Area shown is 7.4 X 7.5 m.
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